- [7] M. Busch & F. Biehler, J. prakt. Chem. [2] 93, 339, 355, 356 (1916).
- [8] K. Rüfenacht, Helv. 51, 518 (1968).
- [9] M. Busch & M. Starke, J. prakt. Chem. [2] 93, 59, 60 (1916).
- [10] S. M. Losanitsch, J. chem. Soc. 119, 763 (1921).
- [11] H. Krzikalla & H. Pohlemann, Badische Anilin- & Soda-Fabrik AG., Ludwigshafen, Schweizer Patent 324674 (1957).

121. Arbeiten über Phosphorsäure- und Thiophosphorsäureester mit einem heterocyclischen Substituenten

4. Mitteilung 1)

3-Isopropyliden-dithiocarbazinsäure-alkylester und deren Ringschluss zu 5-Alkylthio-1,3,4-thiadiazol-2(3H)-onen

von K. Rüfenacht

Forschung Agrarchemikalien, R-1093.4.53, $CIBA\text{-}GEIGY\ AG$., CH-4002 Basel

(20. IV. 72)

Summary. Impurities in crude oily dithiocarbazic acid (2'-methoxy)-ethyl ester causing troubles in the ring closure to 5-(2'-methoxy-ethylthio)-1,3,4-thiadiazol-2(3H)-one and in succeeding reactions are eliminated by using the crystalline 3-isopropylidene-dithiocarbazic acid (2'-methoxy)-ethyl ester, which can be obtained directly by alkylation of potassium dithiocarbazate with 2-methoxy-ethyl bromide in presence of acetone. By the action of phosgene followed by that of water, the isopropylidene compound yields the oily 5-(2'-methoxy-ethylthio)-1,3,4-thiadiazol-2(3H)-one by splitting off the isopropylidene group and by ring closure in one single step.

In der 3. Mitteilung dieser Reihe [1] ist über eine ergiebige Herstellung von Dithiocarbazinsäure-alkylestern 2 berichtet worden. Der aus nicht isoliertem Kalium-dithiocarbazinat 1 mit 2-Methoxy-äthylbromid bereitete Ester (2, $R = CH_2CH_2OCH_3$) ist nicht kristallisierbar und enthält Verunreinigungen, welche bei Weiterumsetzungen stören und namentlich die Reinherstellung von 5-(2'-Methoxy-äthylthio)-1,3,4-thiadiazol-2(3H)-on (4, $R = CH_2CH_2OCH_3$), von dessen N-Hydroxymethyl- und N-Chlormethyl-Derivat (5, Z = OH bzw. Cl) und des Dithiophosphorsäure-ester-Derivates 6, die alle ölig sind, erschweren.

Nun kann aus dem rohen Ester 2 ($R=CH_2CH_2OCH_3$) mit Aceton die kristallisierte 3-Isopropyliden-Verbindung 3 ($R=CH_2CH_2OCH_3$) bereitet und damit eine Reinigung erzielt werden.

Versuche mit Dithiocarbazinsäure-methylester $(2, R = CH_3)$ und deren Übertragung auf den Methoxy-äthylester $(2, R = CH_2CH_2OCH_3)$ haben ergeben, dass zur Herstellung der 5-Alkylthio-1,3,4-thiadiazol-2(3H)-one 4 der Umweg über die Isopropyliden-Verbindungen 3 keine zusätzliche Operation erfordert, weil Veresterung und Umsetzung mit Aceton einerseits, Wiederabspaltung der Isopropylidengruppe und Ringschluss mit Phosgen andrerseits je in einer Stufe ablaufen: Wenn Kalium-dithiocarbazinat (1) in Gegenwart von Aceton alkyliert wird, bilden sich direkt die

^{1) 3.} Mitteilung: [1].

3-Isopropyliden-Ester 3; Einwirkung von Phosgen auf diese mit nachfolgendem Zusatz von Wasser schliesst den Ring zu 4 unter Abspaltung der Isopropylidengruppe.

Aus so gewonnenem 5-(2'-Methoxy-äthylthio)-1,3,4-thiadiazol-2(3H)-on (4, R = $CH_2CH_2OCH_3$) lässt sich über 5 (Z = OH bzw. Cl) der gegen Zecken wirksame Dithiophosphorsäureester 6 [2] ohne Schwierigkeiten rein erhalten.

Für die Mikroanalysen danke ich unserem Mikroanalytischen Laboratorium (Dr. H. Wagner) und für tatkräftige experimentelle Hilfe Herrn H. Brunner.

Experimenteller Teil

Die Smp. wurden auf dem Kofler-Block bestimmt und sind nicht korrigiert.

1.3-Isopropyliden-dithiocarbazinsäure-alkylester 3. – 1.1. Methylester. Aus Dithiocarbazinsäure-methylester: Eine Suspension von 122 g (1 Mol) Dithiocarbazinsäure-methylester [1] in 150 ml Methanol versetzte man mit 75 g (1,3 Mol) Aceton. Die Temperatur stieg bis 40°, der Ester ging in Lösung, und es bildete sich eine neue Fällung. Nach 1 Std. wurde mit 300 ml Wasser versetzt, abfiltriert und aus Methanol/Wasser umkristallisiert: 120 g (74%), Smp. 116–117°.

Direkt: Eine Lösung von 66 g (1,18 Mol) Kaliumhydroxid in 200 ml Alkohol versetzte man mit 55 g (1.1 Mol) 100proz. Hydrazinhydrat. Bei 0–15° tropfte man langsam 80 g (1,05 Mol) Schwefelkohlenstoff zu und liess 2 Std. bei Raumtemp. ausreagieren. Nach Verdünnen mit 200 ml Wasser wurde mit 75 g (1,3 Mol) Aceton versetzt. Bei 25–35° tropfte man 126 g (1 Mol) Dimethylsulfat zu. Es bildete sich eine kristalline Fällung. Man rührte 2 Std. bei Raumtemp., kühlte auf 0°, filtrierte ab und kristallisierte aus Methanol/Wasser um: 105 g (65%), Smp. 116–117°.

1.2. 2-Methoxy-äthylester. Aus rohem Dithiocarbazinsäure-(2'-methoxy-äthyl)-ester: Eine Lösung von 93 g (ca. 0,56 Mol) rohem, öligem Dithiocarbazinsäure-(2'-methoxy-äthyl)-ester [1] in 200 ml Methanol/Wasser 1:1 versetzte man mit 40 g (0,69 Mol) Accton. Nach 1 Std. Rühren bei Raumtemp. wurde gekühlt, die kristalline Fällung abfiltriert und aus 75 ml Methanol umkristallisiert (-15°): 50 g (43%), Smp. 91-92°.

$$C_7H_{14}N_2OS_2$$
 (206,33) Ber. N 13,58 S 31,08% Gef. N 13,51 S 31.24%

Direkt: Eine Lösung von 228 g (4,06 Mol) Kaliumhydroxid in 700 ml Alkohol wurde mit 195 g (3,9 Mol) 100proz. Hydrazinhydrat versetzt. Bei 0–15° tropfte man langsam unter gutem

Rühren 280 g (3,7 Mol) Schwefelkohlenstoff zu und liess 2 Std. bei Raumtemp. ausreagieren. Nach Verdünnen mit 1150 ml Wasser wurde mit 240 g (4.15 Mol) Aceton versetzt. Bei 30–35° tropfte man 490 g (3,5 Mol) 2-Methoxy-äthylbromid [3] zu und liess über Nacht bei Raumtemp. ausreagieren. Man kühlte auf 0°, filtrierte die entstandene Fällung ab und kristallisierte sie aus 500 ml Methanol um (–15°): 314 g (43,5%), Smp. 89–91°.

- 2. 5-Alkylthio-1,3,4-thiadiazol-2(3H)-one 4 aus 3-Isopropyliden-dithiocarbazinsäure-alkylestern 3. 2.1. 5-Methylthio-Verbindung: Zu einer Suspension von 33 g (0,2 Mol) 3-Isopropyliden-dithiocarbazinsäure-methylester in 90 ml wasserfreiem Benzol tropfte man bei 5–15 °unter gutem Rühren eine ca. 30proz. benzolische Phosgenlösung, die ca. 30 g (0,3 Mol) Phosgen enthielt. Man rührte 1 Std. bei Raumtemp. und tropfte dann unter Kühlung 50 ml Wasser zu (anfänglich starker Temperaturanstieg). Man rührte 3 Std. und filtrierte ausgeschiedene Kristalle ab. Die Benzolschicht des Filtrats wurde abgetrennt, eingedampft und der Eindampfrückstand (11 g) zusammen mit dem Abfiltrierten (18 g) aus 60 ml Methanol/Wasser 1:1 umkristallisiert: 22 g (73%), Smp. 95–96°, identisch mit authentischem Material [1].
- 2.2. 5-(2'-Methoxy-äthylthio)-Verbindung: Zu einer Suspension von 206 g (1 Mol) 3-Isopropyliden-dithiocarbazinsäure-(2'-methoxy-äthyl)-ester in 400 ml wasserfreiem Benzol tropfte man unter guter Kühlung und starkem Rühren bei 5–15° möglichst rasch eine ca. 25proz. benzolische Phosgenlösung, die ca. 130 g (1,3 Mol) Phosgen enthielt. Nach 1 Std. Rühren bei Raumtemp. tropfte man unter guter Kühlung bei höchstens 15° 300 ml Wasser zu und rührte 2 Std. bei Raumtemp. Die Benzolschicht wurde abgetrennt, mit 100 ml Wasser gewaschen und mit 250 ml 4 N NaOH extrahiert. Der NaOH-Auszug wurde mit Tierkohle filtriert und mit 60 g Eisessig auf ca. pH 5 gestellt. Das ausgeschiedene Öl wurde ausgeäthert und im Hochvakuum destilliert: 108 g (52,5%) hellgelbes Öl, Sdp. 149–150°/0,02 Torr.

 $C_5H_8N_2O_2S_2$ (192,26) Ber. N 14,57 S 33,35% Gef. N 14,65 S 33,58%

- 3. 3-Chlormethyl-5-(2'-methoxy-äthylthio)-1,3,4-thiadiazol-2(3H)-on (5, Z=Cl) über die N-Hydroxymethyl-Verbindung (5, Z=OH): 144 g (0,75 Mol) 5-(2'-Methoxy-äthylthio)-1,3,4-thiadiazol-2(3H)-on und 25 g (0,83 Mol) pulverisierter Paraformaldehyd wurden 2 Std. bei 90° gerührt. Die fast klare Schmelze wurde in 350 ml Chloroform gelöst. Man kühlte auf -10° und liess rasch 120 g (1 Mol) Thionylchlorid zufliessen. Nach $^1/_2$ Std. Rühren bei Raumtemp. erwärmte man langsam und kochte 1 Std. unter Rückfluss. Leichtflüchtiges wurde im Rotationsverdampfer bei 50° abdestilliert. Den öligen Rückstand destillierte man im Hochvakuum: 136 g (75,5%) blass gelbes Öl, Sdp. 140–142°/0,2 Torr.
- 4. Dithiophosphorsäure-O,O-diäthyl-S-[(5-(2'-methoxy-äthylthio)-1,3,4-thiadiazol-2(3H)-on-3-yl)-methyl]-ester (6): Zu einer Suspension von 770 g (3,44 Mol) K-diäthyl-dithiophosphat in 1000 ml Aceton tropfte man rasch eine Lösung von 758 g (3,15 Mol) obiger Chlormethyl-Verbindung in 800 ml Aceton und hielt die Temp. bei 35°. Nach Rühren bei Raumtemp. über Nacht destillierte man das Aceton im Vakuum bei 35° ab, versetzte den Rückstand mit 1500 ml Wasser und nahm das ausgeschiedene Öl in Äther auf. Die Ätherlösung wurde mit Natriumhydrogencarbonat-Lösung und mit Wasser gewaschen, getrocknet und eingedampft. Rückstand 1015 g (82%) gelbes Öl.

 $C_{10}H_{19}N_2O_4PS_4\ (390,57) \qquad \text{Ber. N 7,17} \quad P\ 7,95 \quad S\ 32,85\% \qquad \text{Gef. N 7,21} \quad P\ 7,92 \quad S\ 32,83\%$

LITERATURVERZEICHNIS

- [1] K. Rüfenacht, Helv. 55, 1178 (1972).
- [2] K. Rüfenacht, J. R. Geigy AG., Basel, Schweiz. Pat. 392521 und 395637 (1965).
- [3] M. H. Palomaa & A. Kenetti, Ber. deutsch. chem. Ges. 64, 797 (1931).